책 소개
▣ 출판사서평
이론으로 익히고 예제로 이해하는 머신러닝, 인공 신경망, 딥러닝
이 책은 총 6개의 장으로 구성되어 있지만, 크게 보면 3개의 주제로 묶을 수 있습니다.
첫 번째 주제는 ‘머신러닝’입니다. 딥러닝은 머신러닝의 기반 위에 세워진 기술입니다. 딥러닝을 제대로 이해하려면 간단하게라도 머신러닝의 철학을 알고 있어야 합니다.
두 번째 주제는 ‘인공 신경망’입니다. 딥러닝은 신경망을 이용한 머신러닝 기법으로, 딥러닝과 신경망은 따로 떼어 놓을 수 없는 불가분의 관계입니다.
세 번째 주제는 이 책의 주제이기도 한 ‘딥러닝’입니다. 그동안 딥러닝의 걸림돌이 되었던 요인을 소개하고, 딥러닝에서 어떻게 해결하는지 제시합니다. 또한 대표적인 딥러닝 기술인 컨벌루션 신경망의 기본 개념과 구조를 소개하고 예제까지 구현해봅니다.
“딥러닝은 우리 연구소 스터디 중 가장 인기 있는 주제입니다. 하지만 초보자와 전문가 사이에는 여전히 상당한 격차가 존재하는 것도 사실입니다. 이 책은 딥러닝을 대략적으로 이해한 초보자들이 더 깊게, 하지만 너무 힘들지 않게 한 단계 올라서는 데 좋은 길잡이가 되어줄 것입니다. 특히 컨벌루션 신경망의 설명은 압권입니다.”
김승일_모두의 연구소 소장
“현업에서 딥러닝 기술을 적용한 기기를 개발하다 보면, 딥러닝 라이브러리를 수정하거나 최적화해야 하는 경우가 많습니다. 이런 작업을 위해서는 딥러닝의 구현을 어느 정도는 이해하고 있어야 합니다. 이 책은 딥러닝의 개념부터 구현까지 간결하게 설명하고 있어, 딥러닝을 처음 접하는 개발자들에게 큰 도움이 될 것입니다.
전정희_(주)보고넷 대표
▣ 작가 소개
저자 : 김성필
서울대학교 항공우주공학과를 졸업하고 동 대학원에서 박사 학위를 받았다. 한국항공우주연구원에서 선임 연구원으로 일하며 무인 비행선, 무인 헬기, 스마트 무인기 등 주로 무인기의 제어 및 탑재 소프트웨어를 개발했다. 이후 국립재활원 재활연구소로 옮겨 연구관으로 근무하며 보조기기 관련 연구개발 및 서비스, 품질 관리 등의 업무를 수행했다. 인공지능 기술을 접목한 서비스와 기기로 노인?장애인의 삶에 도움이 되겠다는 포부로 ㈜제이마플을 창립하고, 현재는 대표를 맡고 있다. 저서로는 『칼만필터의 이해』(아진, 2010), 『Kalman Filters for Beginners』(CreateSpace, 2011), 『Rigid Body for Beginners』(CreateSpace, 2013) 등이 있다.
▣ 주요 목차
CHAPTER 1 머신러닝
1.1 머신러닝과 딥러닝
1.2 머신러닝이란
1.3 머신러닝의 난제
1.4 과적합
1.5 과적합과 싸우기
1.6 머신러닝의 종류
1.7 분류와 회귀
1.7 요약
CHAPTER 2 신경망
2.1 서론
2.2 신경망의 노드
2.3 신경망의 계층 구조
2.4 신경망의 지도학습
2.5 단층 신경망의 학습: 델타 규칙
2.6 델타 규칙의 일반 형태
2.7 SGD, 배치, 미니 배치
2.8 예제: 델타 규칙
2.9 단층 신경망의 한계
2.10 요약
CHAPTER 3 다층 신경망의 학습
3.1 서론
3.2 역전파 알고리즘
3.3 예제
3.4 비용함수와 학습 규칙
3.5 예제
3.6 요약
CHAPTER 4 신경망과 분류
4.1 서론
4.2 이진 분류
4.3 다범주 분류
4.4 예제: 다범주 분류
4.5 요약
CHAPTER 5 딥러닝
5.1 서론
5.2 심층 신경망의 성능 개선
5.3 예제
5.4 요약
CHAPTER 6 컨벌루션 신경망
6.1 서론
6.2 컨브넷의 구조
6.3 컨벌루션 계층
6.4 풀링 계층
6.5 예제: MNIST
6.6 요약
이론으로 익히고 예제로 이해하는 머신러닝, 인공 신경망, 딥러닝
이 책은 총 6개의 장으로 구성되어 있지만, 크게 보면 3개의 주제로 묶을 수 있습니다.
첫 번째 주제는 ‘머신러닝’입니다. 딥러닝은 머신러닝의 기반 위에 세워진 기술입니다. 딥러닝을 제대로 이해하려면 간단하게라도 머신러닝의 철학을 알고 있어야 합니다.
두 번째 주제는 ‘인공 신경망’입니다. 딥러닝은 신경망을 이용한 머신러닝 기법으로, 딥러닝과 신경망은 따로 떼어 놓을 수 없는 불가분의 관계입니다.
세 번째 주제는 이 책의 주제이기도 한 ‘딥러닝’입니다. 그동안 딥러닝의 걸림돌이 되었던 요인을 소개하고, 딥러닝에서 어떻게 해결하는지 제시합니다. 또한 대표적인 딥러닝 기술인 컨벌루션 신경망의 기본 개념과 구조를 소개하고 예제까지 구현해봅니다.
“딥러닝은 우리 연구소 스터디 중 가장 인기 있는 주제입니다. 하지만 초보자와 전문가 사이에는 여전히 상당한 격차가 존재하는 것도 사실입니다. 이 책은 딥러닝을 대략적으로 이해한 초보자들이 더 깊게, 하지만 너무 힘들지 않게 한 단계 올라서는 데 좋은 길잡이가 되어줄 것입니다. 특히 컨벌루션 신경망의 설명은 압권입니다.”
김승일_모두의 연구소 소장
“현업에서 딥러닝 기술을 적용한 기기를 개발하다 보면, 딥러닝 라이브러리를 수정하거나 최적화해야 하는 경우가 많습니다. 이런 작업을 위해서는 딥러닝의 구현을 어느 정도는 이해하고 있어야 합니다. 이 책은 딥러닝의 개념부터 구현까지 간결하게 설명하고 있어, 딥러닝을 처음 접하는 개발자들에게 큰 도움이 될 것입니다.
전정희_(주)보고넷 대표
▣ 작가 소개
저자 : 김성필
서울대학교 항공우주공학과를 졸업하고 동 대학원에서 박사 학위를 받았다. 한국항공우주연구원에서 선임 연구원으로 일하며 무인 비행선, 무인 헬기, 스마트 무인기 등 주로 무인기의 제어 및 탑재 소프트웨어를 개발했다. 이후 국립재활원 재활연구소로 옮겨 연구관으로 근무하며 보조기기 관련 연구개발 및 서비스, 품질 관리 등의 업무를 수행했다. 인공지능 기술을 접목한 서비스와 기기로 노인?장애인의 삶에 도움이 되겠다는 포부로 ㈜제이마플을 창립하고, 현재는 대표를 맡고 있다. 저서로는 『칼만필터의 이해』(아진, 2010), 『Kalman Filters for Beginners』(CreateSpace, 2011), 『Rigid Body for Beginners』(CreateSpace, 2013) 등이 있다.
▣ 주요 목차
CHAPTER 1 머신러닝
1.1 머신러닝과 딥러닝
1.2 머신러닝이란
1.3 머신러닝의 난제
1.4 과적합
1.5 과적합과 싸우기
1.6 머신러닝의 종류
1.7 분류와 회귀
1.7 요약
CHAPTER 2 신경망
2.1 서론
2.2 신경망의 노드
2.3 신경망의 계층 구조
2.4 신경망의 지도학습
2.5 단층 신경망의 학습: 델타 규칙
2.6 델타 규칙의 일반 형태
2.7 SGD, 배치, 미니 배치
2.8 예제: 델타 규칙
2.9 단층 신경망의 한계
2.10 요약
CHAPTER 3 다층 신경망의 학습
3.1 서론
3.2 역전파 알고리즘
3.3 예제
3.4 비용함수와 학습 규칙
3.5 예제
3.6 요약
CHAPTER 4 신경망과 분류
4.1 서론
4.2 이진 분류
4.3 다범주 분류
4.4 예제: 다범주 분류
4.5 요약
CHAPTER 5 딥러닝
5.1 서론
5.2 심층 신경망의 성능 개선
5.3 예제
5.4 요약
CHAPTER 6 컨벌루션 신경망
6.1 서론
6.2 컨브넷의 구조
6.3 컨벌루션 계층
6.4 풀링 계층
6.5 예제: MNIST
6.6 요약
01. 반품기한
- 단순 변심인 경우 : 상품 수령 후 7일 이내 신청
- 상품 불량/오배송인 경우 : 상품 수령 후 3개월 이내, 혹은 그 사실을 알게 된 이후 30일 이내 반품 신청 가능
02. 반품 배송비
반품사유 | 반품 배송비 부담자 |
---|---|
단순변심 | 고객 부담이며, 최초 배송비를 포함해 왕복 배송비가 발생합니다. 또한, 도서/산간지역이거나 설치 상품을 반품하는 경우에는 배송비가 추가될 수 있습니다. |
고객 부담이 아닙니다. |
03. 배송상태에 따른 환불안내
진행 상태 | 결제완료 | 상품준비중 | 배송지시/배송중/배송완료 |
---|---|---|---|
어떤 상태 | 주문 내역 확인 전 | 상품 발송 준비 중 | 상품이 택배사로 이미 발송 됨 |
환불 | 즉시환불 | 구매취소 의사전달 → 발송중지 → 환불 | 반품회수 → 반품상품 확인 → 환불 |
04. 취소방법
- 결제완료 또는 배송상품은 1:1 문의에 취소신청해 주셔야 합니다.
- 특정 상품의 경우 취소 수수료가 부과될 수 있습니다.
05. 환불시점
결제수단 | 환불시점 | 환불방법 |
---|---|---|
신용카드 | 취소완료 후, 3~5일 내 카드사 승인취소(영업일 기준) | 신용카드 승인취소 |
계좌이체 |
실시간 계좌이체 또는 무통장입금 취소완료 후, 입력하신 환불계좌로 1~2일 내 환불금액 입금(영업일 기준) |
계좌입금 |
휴대폰 결제 |
당일 구매내역 취소시 취소 완료 후, 6시간 이내 승인취소 전월 구매내역 취소시 취소 완료 후, 1~2일 내 환불계좌로 입금(영업일 기준) |
당일취소 : 휴대폰 결제 승인취소 익월취소 : 계좌입금 |
포인트 | 취소 완료 후, 당일 포인트 적립 | 환불 포인트 적립 |
06. 취소반품 불가 사유
- 단순변심으로 인한 반품 시, 배송 완료 후 7일이 지나면 취소/반품 신청이 접수되지 않습니다.
- 주문/제작 상품의 경우, 상품의 제작이 이미 진행된 경우에는 취소가 불가합니다.
- 구성품을 분실하였거나 취급 부주의로 인한 파손/고장/오염된 경우에는 취소/반품이 제한됩니다.
- 제조사의 사정 (신모델 출시 등) 및 부품 가격변동 등에 의해 가격이 변동될 수 있으며, 이로 인한 반품 및 가격보상은 불가합니다.
- 뷰티 상품 이용 시 트러블(알러지, 붉은 반점, 가려움, 따가움)이 발생하는 경우 진료 확인서 및 소견서 등을 증빙하면 환불이 가능하지만 이 경우, 제반 비용은 고객님께서 부담하셔야 합니다.
- 각 상품별로 아래와 같은 사유로 취소/반품이 제한 될 수 있습니다.
상품군 | 취소/반품 불가사유 |
---|---|
의류/잡화/수입명품 | 상품의 택(TAG) 제거/라벨 및 상품 훼손으로 상품의 가치가 현저히 감소된 경우 |
계절상품/식품/화장품 | 고객님의 사용, 시간경과, 일부 소비에 의하여 상품의 가치가 현저히 감소한 경우 |
가전/설치상품 | 전자제품 특성 상, 정품 스티커가 제거되었거나 설치 또는 사용 이후에 단순변심인 경우, 액정화면이 부착된 상품의 전원을 켠 경우 (상품불량으로 인한 교환/반품은 AS센터의 불량 판정을 받아야 합니다.) |
자동차용품 | 상품을 개봉하여 장착한 이후 단순변심의 경우 |
CD/DVD/GAME/BOOK등 | 복제가 가능한 상품의 포장 등을 훼손한 경우 |
상품의 시리얼 넘버 유출로 내장된 소프트웨어의 가치가 감소한 경우 | |
노트북, 테스크탑 PC 등 | 홀로그램 등을 분리, 분실, 훼손하여 상품의 가치가 현저히 감소하여 재판매가 불가할 경우 |