책 소개
직접 구현하면서 배우는 본격 딥러닝 입문서
이번에는 순환 신경망과 자연어 처리다!
이 책은 『밑바닥부터 시작하는 딥러닝』에서 다루지 못했던 순환 신경망(RNN)을 자연어 처리와 시계열 데이터 처리에 사용하는 딥러닝 기술에 초점을 맞춰 살펴본다. 8장 구성으로 전체를 하나의 이야기처럼 순서대로 읽도록 꾸몄다. 전편에서 배운 내용을 요약한 신경망 복습을 첫 장에 배치하여 신경망과 파이썬 지식을 어느 정도 갖춘 분이라면 전편을 읽지 않아도 무리 없이 따라올 수 있도록 배려했다.
★ 『밑바닥부터 시작하는 딥러닝』의 명성을 그대로!
이 책은 『밑바닥부터 시작하는 딥러닝』의 속편입니다. 전편에 이어 계속 딥러닝 기술을 다룹니
다. 특히 이번에는 자연어 처리와 시계열 데이터 처리에 초점을 맞춰 딥러닝을 사용해 다양한
문제에 도전합니다. 그리고 전편과 똑같이 '밑바닥부터 만든다'는 기치 아래, 딥러닝을 활용한
고급 기술들을 차분히 만끽해갈 것입니다.
★ 자연어 처리와 시계열 데이터 처리에 초점을 맞춰!
이 책에서는 자연어 처리와 시계열 데이터 처리에 초점을 맞춰 딥러닝에서 중요한 기술들을 배웁니다. 구체적으로는 word2vec과 RNN, LSTM과 GRU, seq2seq와 어텐션 같은 기술입니다. 이 책은 이 기술들을 가능한 한 쉬운 말로 설명하고 실제로 만들어보면서 확실한 내 것이 되도록 안내합니다.
★ 이 책에서 다루는 내용
- 외부 라이브러리에 의지하지 않고, 밑바닥부터 딥러닝 프로그램을 구현합니다.
- 『밑바닥부터 시작하는 딥러닝』의 속편으로서 자연어 처리와 시계열 데이터 처리에 사용하는 딥러닝 기술에 초점을 맞춥니다.
- 실제로 동작하는 파이썬 소스 코드와 독자가 직접 실습해볼 수 있는 학습 환경을 제공합니다.
- 가능한 한 쉬운 말로, 명확한 그림을 많이 동원하여 설명합니다.
- 수식도 사용하지만 그 이상으로 소스 코드에 기초한 설명을 중시합니다.
- ' 왜 그 기법이 뛰어난가?', '왜 그 방식이 먹히는가?', '왜 그것이 문제인가?' 등 '왜'를 소중히 합니다.
작가 소개
지은이 : 사이토 고키
1984년 나가사키 현 쓰시마 태생. 도쿄공업대학교 공학부를 졸업하고 도쿄대학대학원 학제정보학부 석사 과정을 수료했다. 현재는 기업에서 인공지능 관련 연구·개발에 매진하고 있다. 오라일리재팬에서 『밑바닥부터 시작하는 딥러닝』 시리즈를 집필했으며 『파이썬 인 프랙티스』, 『밑바닥부터 만드는 컴퓨팅 시스템』 등을 일본어로 옮겼다.ㅊ
옮긴이 : 개앞맵시
고려대학교 컴퓨터학과를 졸업하고 삼성전자에서 자바 가상 머신, 바다 플랫폼, 챗온 메신저 서비스 등을 개발했다. 주 업무 외에 분산 빌드, 지속적 통합, 수명주기 관리 도구, 애자일 도입 등 동료 개발자들에게 실질적인 도움을 주는 일에 적극적이었다. 그 후 창업 전선에 뛰어들어 좌충
우돌하다가, 개발자 커뮤니티에 기여하는 더 나은 방법을 찾아 출판 시장에 뛰어들었다.
한빛미디어에서 『밑바닥부터 시작하는 딥러닝』 시리즈, 『리팩터링 2판』, 『Effective Unit Testing』을 번역했고, 인사이트에서 『이펙티브 자바 3판』과 『JUnit 인 액션 2판』을 번역했다.
개발자들과의 소통 창구로 소소하게 facebook.com/dev.loadmap 페이지를 운영 중이다.
목 차
CHAPTER 1 신경망 복습
__1.1 수학과 파이썬 복습
__1.2 신경망의 추론
__1.3 신경망의 학습
__1.4 신경망으로 문제를 풀다
__1.5 계산 고속화
__1.6 정리
CHAPTER 2 자연어와 단어의 분산 표현
__2.1 자연어 처리란
__2.2 시소러스
__2.3 통계 기반 기법
__2.4 통계 기반 기법 개선하기
__2.5 정리
CHAPTER 3 word2vec
__3.1 추론 기반 기법과 신경망
__3.2 단순한 word2vec
__3.3 학습 데이터 준비
__3.4 CBOW 모델 구현
__3.5 word2vec 보충
__3.6 정리
CHAPTER 4 word2vec 속도 개선
__4.1 word2vec 개선 ①
__4.2 word2vec 개선 ②
__4.3 개선판 word2vec 학습
__4.4 word2vec 남은 주제
__4.5 정리
CHAPTER 5 순환 신경망(RNN)
__5.1 확률과 언어 모델
__5.2 RNN이란
__5.3 RNN 구현
__5.4 시계열 데이터 처리 계층 구현
__5.5 RNNLM 학습과 평가
__5.6 정리
CHAPTER 6 게이트가 추가된 RNN
__6.1 RNN의 문제점
__6.2 기울기 소실과 LSTM
__6.3 LSTM 구현
__6.4 LSTM을 사용한 언어 모델
__6.5 RNNLM 추가 개선
__6.6 정리
CHAPTER 7 RNN을 사용한 문장 생성
__7.1 언어 모델을 사용한 문장 생성
__7.2 seq2seq
__7.3 seq2seq 구현
__7.4 seq2seq 개선
__7.5 seq2seq를 이용하는 애플리케이션
__7.6 정리
CHAPTER 8 어텐션
__8.1 어텐션의 구조
__8.2 어텐션을 갖춘 seq2seq 구현
__8.3 어텐션 평가
__8.4 어텐션에 관한 남은 이야기
__8.5 어텐션 응용
__8.6 정리
APPENDIX A 시그모이드 함수와 tanh 함수의 미분
__A.1 시그모이드 함수
__A.2 tanh 함수
__A.3 정리
APPENDIX B WordNet 맛보기
__B.1 NLTK 설치
__B.2 WordNet에서 동의어 얻기
__B.3 WordNet과 단어 네트워크
__B.4 WordNet을 사용한 의미 유사도
APPENDIX C GRU
__C.1 GRU의 인터페이스
__C.2 GRU의 계산 그래프
역자 소개
- 단순 변심인 경우 : 상품 수령 후 7일 이내 신청
- 상품 불량/오배송인 경우 : 상품 수령 후 3개월 이내, 혹은 그 사실을 알게 된 이후 30일 이내 반품 신청 가능
반품사유 | 반품 배송비 부담자 |
---|---|
단순변심 | 고객 부담이며, 최초 배송비를 포함해 왕복 배송비가 발생합니다. 또한, 도서/산간지역이거나 설치 상품을 반품하는 경우에는 배송비가 추가될 수 있습니다. |
고객 부담이 아닙니다. |
진행 상태 | 결제완료 | 상품준비중 | 배송지시/배송중/배송완료 |
---|---|---|---|
어떤 상태 | 주문 내역 확인 전 | 상품 발송 준비 중 | 상품이 택배사로 이미 발송 됨 |
환불 | 즉시환불 | 구매취소 의사전달 → 발송중지 → 환불 | 반품회수 → 반품상품 확인 → 환불 |
- 결제완료 또는 배송상품은 1:1 문의에 취소신청해 주셔야 합니다.
- 특정 상품의 경우 취소 수수료가 부과될 수 있습니다.
결제수단 | 환불시점 | 환불방법 |
---|---|---|
신용카드 | 취소완료 후, 3~5일 내 카드사 승인취소(영업일 기준) | 신용카드 승인취소 |
계좌이체 |
실시간 계좌이체 또는 무통장입금 취소완료 후, 입력하신 환불계좌로 1~2일 내 환불금액 입금(영업일 기준) |
계좌입금 |
휴대폰 결제 |
당일 구매내역 취소시 취소 완료 후, 6시간 이내 승인취소 전월 구매내역 취소시 취소 완료 후, 1~2일 내 환불계좌로 입금(영업일 기준) |
당일취소 : 휴대폰 결제 승인취소 익월취소 : 계좌입금 |
포인트 | 취소 완료 후, 당일 포인트 적립 | 환불 포인트 적립 |
- 단순변심으로 인한 반품 시, 배송 완료 후 7일이 지나면 취소/반품 신청이 접수되지 않습니다.
- 주문/제작 상품의 경우, 상품의 제작이 이미 진행된 경우에는 취소가 불가합니다.
- 구성품을 분실하였거나 취급 부주의로 인한 파손/고장/오염된 경우에는 취소/반품이 제한됩니다.
- 제조사의 사정 (신모델 출시 등) 및 부품 가격변동 등에 의해 가격이 변동될 수 있으며, 이로 인한 반품 및 가격보상은 불가합니다.
- 뷰티 상품 이용 시 트러블(알러지, 붉은 반점, 가려움, 따가움)이 발생하는 경우 진료 확인서 및 소견서 등을 증빙하면 환불이 가능하지만 이 경우, 제반 비용은 고객님께서 부담하셔야 합니다.
- 각 상품별로 아래와 같은 사유로 취소/반품이 제한 될 수 있습니다.
상품군 | 취소/반품 불가사유 |
---|---|
의류/잡화/수입명품 | 상품의 택(TAG) 제거/라벨 및 상품 훼손으로 상품의 가치가 현저히 감소된 경우 |
계절상품/식품/화장품 | 고객님의 사용, 시간경과, 일부 소비에 의하여 상품의 가치가 현저히 감소한 경우 |
가전/설치상품 | 전자제품 특성 상, 정품 스티커가 제거되었거나 설치 또는 사용 이후에 단순변심인 경우, 액정화면이 부착된 상품의 전원을 켠 경우 (상품불량으로 인한 교환/반품은 AS센터의 불량 판정을 받아야 합니다.) |
자동차용품 | 상품을 개봉하여 장착한 이후 단순변심의 경우 |
CD/DVD/GAME/BOOK등 | 복제가 가능한 상품의 포장 등을 훼손한 경우 |
상품의 시리얼 넘버 유출로 내장된 소프트웨어의 가치가 감소한 경우 | |
노트북, 테스크탑 PC 등 | 홀로그램 등을 분리, 분실, 훼손하여 상품의 가치가 현저히 감소하여 재판매가 불가할 경우 |