핸즈온 머신러닝 (3판) (전2권)

고객평점
저자오렐리앙 제롱
출판사항한빛미디어, 발행일:2023/09/29
형태사항p.1036 B5판:24
매장위치자연과학부(B2) , 재고문의 : 051-816-9500
ISBN9791169211475 [소득공제]
판매가격 60,000원   54,000원  (인터넷할인가:10%)
포인트 2,700점
배송비결제주문시 결제
  • 주문수량 

총 금액 : 0원

책 소개

실무 밀착형 예제부터 스테이블 디퓨전 등 최신 머신러닝 트렌드까지

주요 인공 지능 콘퍼런스에서 전문가들이 소개한 최고의 실전 지침서

** 독자의 편의를 고려한 분권(1권, 2권)

** 최신 라이브러리 버전으로 전체 코드 업데이트

** <연습문제 + 해답>, <머신러닝 프로젝트 체크리스트> 수록

수학에 『수학의 정석』이 있다면 인공 지능에는 『핸즈온 머신러닝』이 있다!

1판과 2판의 피드백을 적극 반영해 한층 더 업그레이드된 『핸즈온 머신러닝』이 3판으로 돌아왔습니다. ‘실제로 머신러닝을 구현하면서 학습한다’는 목표를 더욱 효과적으로 달성할 수 있도록 복잡한 주제를 구조화하고 난이도에 따라 순차적으로 학습할 수 있게 개선했습니다. 또한 누구나 쉽게 이해할 수 있도록 기존 설명을 더 친절하고 명확하게 다듬고 보완했습니다. 마지막으로, 빠르게 발전하는 분야인 만큼 전체 코드 버전과 기술 트렌드를 최신 정보로 업데이트했습니다(하단의 ‘출판사 리뷰’에서 3판의 업데이트 내용을 확인할 수 있습니다).

머신러닝을 전혀 모르는 입문자도 온라인으로 제공되는 주피터 노트북을 활용해 손쉽게 실습할 수 있습니다. 여기에 박해선 역자의 친절한 추가 설명까지 더해져 답답함 없이 수월하게 학습할 수 있습니다.


초보자와 전문가 모두를 만족시킨 전 세계 1위 베스트셀러

이 책은 이론과 실습을 아우르며 머신러닝과 딥러닝 모두를 관통하는 큰 그림을 그릴 수 있도록 돕습니다. 특히 도식을 활용한 설명과 최신 버전의 실무 밀착형 코드 예제를 통해 손쉽게 모델을 훈련하고 신경망을 구축하는 방법을 익힐 수 있습니다. 또한 장마다 제공되는 연습문제를 풀면서 배운 내용을 복습하고 자신의 프로젝트에 적용해볼 수 있습니다. 파이썬 프로그래밍 경험이 있다면 바로 시작해보세요. 누구나 머신러닝 전문가가 될 수 있습니다!


** 3판에서 업데이트된 내용 **

⦁ 코드 전체를 최신 라이브러리 버전으로 업데이트

⦁ 상세한 모델 선택 가이드라인

⦁ 사이킷런과 케라스의 새로운 기능

⦁ 사이킷런: 특성 이름 추적, 히스토그램 기반 그레이디언트 부스팅, 레이블 전파 등

⦁ 케라스: 전처리 층, 데이터 증식 층 등

⦁ 2판에 없는 라이브러리 추가

⦁ 하이퍼파라미터 튜닝을 위한 케라스 튜너 라이브러리

⦁ 자연어 처리를 위한 허깅 페이스의 트랜스포머스 라이브러리

⦁ 확산 모델(스테이블 디퓨전)

⦁ 컴퓨터 비전, 자연어 처리 분야의 최신 트렌드와 구현


** 누구를 위한 책인가요? **

⦁ 기초 지식은 있지만 실무 경험이 적은 초보자

⦁ 실무 능력을 향상시키고 싶은 중급자

⦁ 머신러닝을 프로젝트에 활용하고 싶은 개발자와 엔지니어

⦁ 머신러닝 연구나 데이터 분석 작업을 하는 데이터 과학자와 연구자


** 이 책의 장점 **

⦁ 복잡한 이론을 나열하지 않고 실용적인 예제를 통해 자세히 설명합니다.

⦁ 직접 실습해보면서 실무 문제 해결 능력을 기르고 자신만의 포트폴리오를 완성할 수 있습니다.

⦁ 여러 가지 머신러닝 및 딥러닝 모델과 도구, 라이브러리에 관한 지식을 확장할 수 있습니다.

⦁ 스테이블 디퓨전을 비롯한 최신 컴퓨터 비전, 자연어 처리, 강화 학습 트렌드를 반영했습니다. 

작가 소개

지은이 : 오렐리앙 제롱

머신러닝 컨설턴트입니다. 2013년에서 2016년까지 구글에서 유튜브 동영상 분류 팀을 이끌었습니다. 2002년에서 2012년까지 프랑스의 모바일 ISP 선두 주자인 위퍼스트 Wifirst를 설립하고 CTO로 일했습니다. 2001년에는 폴리콘셀 Polyconseil을 설립하고 CTO로 일했습니다. 이 회사는 지금 전기차 공유 서비스인 오토립 Autolib′을 운영하고 있습니다.

그전에는 재무(J. P. 모건과 소시에테 제네랄 Société Générale ), 방위(캐나다 국방부), 의료(수혈) 등 다양한 분야에서 엔지니어로 일했습니다. C++, WiFi, 인터넷 구조에 관한 기술 서적 몇 권을 집필했으며 프랑스의 한 공과대학에서 컴퓨터과학을 가르쳤습니다.


옮긴이 : 박해선

기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했습니다. 블로그(tensorflow.blog )에 글을 쓰고 머신러닝과 딥러닝에 관한 책을 집필, 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다.

『챗GPT로 대화하는 기술』(한빛미디어, 2023), 『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020), 『혼자 공부하는 데이터 분석 with 파이썬』(한빛미디어, 2023), 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 집필했습니다.

『트랜스포머를 활용한 자연어 처리』(한빛미디어, 2022), 『케라스 창시자에게 배우는 딥러닝개정 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『파이썬 라이브러리를 활용한 머신러닝(번역개정2판)』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『파이토치로 배우는 자연어 처리』(한빛미디어, 2021), 『머신러닝 교과서 with 파이썬, 사이킷런, 텐서플로(개정3판)』(길벗, 2021)을 비롯해 여러 권의 책을 우리말로 옮겼습니다.

목 차

[1부 머신러닝]

1장 한눈에 보는 머신러닝

1.1 머신러닝이란?

1.2 왜 머신러닝을 사용하나요?

1.3 애플리케이션 사례

1.4 머신러닝 시스템의 종류

_1.4.1 훈련 지도 방식

__지도 학습

__비지도 학습

__준비도 학습

__자기 지도 학습

__강화 학습

_1.4.2 배치 학습과 온라인 학습

__배치 학습

__온라인 학습

_1.4.3 사례 기반 학습과 모델 기반 학습

__사례 기반 학습

__모델 기반 학습

1.5 머신러닝의 주요 도전 과제

_1.5.1 충분하지 않은 양의 훈련 데이터

_1.5.2 대표성 없는 훈련 데이터

_1.5.3 낮은 품질의 데이터

_1.5.4 관련없는 특성

_1.5.5 훈련 데이터 과대적합

_1.5.6 훈련 데이터 과소적합

_1.5.7 핵심 요약

1.6 테스트와 검증

_1.6.1 하이퍼파라미터 튜닝과 모델 선택

_1.6.2 데이터 불일치

연습문제

2장 머신러닝 프로젝트 처음부터 끝까지

2.1 실제 데이터로 작업하기

2.2 큰 그림 보기

_2.2.1 문제 정의

_2.2.2 성능 측정 지표 선택

_2.2.3 가정 검사

2.3 데이터 가져오기

_2.3.1 구글 코랩을 사용하여 예제 코드 실행하기

_2.3.2 코드와 데이터 저장하기

_2.3.3 대화식 환경의 편리함과 위험

_2.3.4 책의 코드와 노트북의 코드

_2.3.5 데이터 다운로드

_2.3.6 데이터 구조 훑어보기

_2.3.7 테스트 세트 만들기

2.4 데이터 이해를 위한 탐색과 시각화

_2.4.1 지리적 데이터 시각화하기

_2.4.2 상관관계 조사하기

_2.4.3 특성 조합으로 실험하기

2.5 머신러닝 알고리즘을 위한 데이터 준비

_2.5.1 데이터 정제

_2.5.2 텍스트와 범주형 특성 다루기

_2.5.3 특성 스케일과 변환

_2.5.4 사용자 정의 변환기

_2.5.5 변환 파이프라인

2.6 모델 선택과 훈련

_2.6.1 훈련 세트에서 훈련하고 평가하기

_2.6.2 교차 검증으로 평가하기

2.7 모델 미세 튜닝

_2.7.1 그리드 서치

_2.7.2 랜덤 서치

_2.7.3 앙상블 방법

_2.7.4 최상의 모델과 오차 분석

_2.7.5 테스트 세트로 시스템 평가하기

2.8 론칭, 모니터링, 시스템 유지 보수

2.9 직접 해보세요!

연습문제

3장 분류

3.1 MNIST

3.2 이진 분류기 훈련

3.3 성능 측정

_3.3.1 교차 검증을 사용한 정확도 측정

_3.3.2 오차 행렬

_3.3.3 정밀도와 재현율

_3.3.4 정밀도/재현율 트레이드오프

_3.3.5 ROC 곡선

3.4 다중 분류

3.5 오류 분석

3.6 다중 레이블 분류

3.7 다중 출력 분류

연습문제

4장 모델 훈련

4.1 선형 회귀

_4.1.1 정규 방정식

_4.1.2 계산 복잡도

4.2 경사 하강법

_4.2.1 배치 경사 하강법

_4.2.2 확률적 경사 하강법

_4.2.3 미니배치 경사 하강법

4.3 다항 회귀

4.4 학습 곡선

4.5 규제가 있는 선형 모델

_4.5.1 릿지 회귀

_4.5.2 라쏘 회귀

_4.5.3 엘라스틱넷

_4.5.4 조기 종료

4.6 로지스틱 회귀

_4.6.1 확률 추정

_4.6.2 훈련과 비용 함수

_4.6.3 결정 경계

_4.6.4 소프트맥스 회귀

연습문제

5장 서포트 벡터 머신

5.1 선형 SVM 분류

_5.1.1 소프트 마진 분류

5.2 비선형 SVM 분류

_5.2.1 다항식 커널

_5.2.2 유사도 특성

_5.2.3 가우스 RBF 커널

_5.2.4 계산 복잡도

5.3 SVM 회귀

5.4 SVM 이론

5.5 쌍대 문제

_5.5.1 커널 SVM

연습문제

6장 결정 트리

6.1 결정 트리 학습과 시각화

6.2 예측

6.3 클래스 확률 추정

6.4 CART 훈련 알고리즘

6.5 계산 복잡도

6.6 지니 불순도 또는 엔트로피?

6.7 규제 매개변수

6.8 회귀

6.9 축 방향에 대한 민감성

6.10 결정 트리의 분산 문제

연습문제

7장 앙상블 학습과 랜덤 포레스트

7.1 투표 기반 분류기

7.2 배깅과 페이스팅

_7.2.1 사이킷런의 배깅과 페이스팅

_7.2.2 OOB 평가

7.3 랜덤 패치와 랜덤 서브스페이스

7.4 랜덤 포레스트

_7.4.1 엑스트라 트리

_7.4.2 특성 중요도

7.5 부스팅

7.5.1 AdaBoost

_7.5.2 그레이디언트 부스팅

_7.5.3 히스토그램 기반 그레이디언트 부스팅

_7.6 스태킹

연습문제

8장 차원 축소

8.1 차원의 저주

8.2 차원 축소를 위한 접근법

_8.2.1 투영

_8.2.2 매니폴드 학습

8.3 주성분 분석

_8.3.1 분산 보존

_8.3.2 주성분

_8.3.3 d차원으로 투영하기

_8.3.4 사이킷런 사용하기

_8.3.5 설명된 분산의 비율

_8.3.6 적절한 차원 수 선택

_8.3.7 압축을 위한 PCA

_8.3.8 랜덤 PCA

_8.3.9 점진적 PCA

8.4 랜덤 투영

8.5 지역 선형 임베딩

8.6 다른 차원 축소 기법

연습문제

9장 비지도 학습

9.1 군집

_9.1.1 k-평균

__k-평균 알고리즘

__센트로이드 초기화 방법

__k-평균 속도 개선과 미니배치 k-평균

__최적의 클러스터 개수 찾기

_9.1.2 k-평균의 한계

_9.1.3 군집을 사용한 이미지 분할

_9.1.4 군집을 사용한 준지도 학습

_9.1.5 DBSCAN

_9.1.6 다른 군집 알고리즘

9.2 가우스 혼합

_9.2.1 가우스 혼합을 사용한 이상치 탐지

_9.2.2 클러스터 개수 선택

_9.2.3 베이즈 가우스 혼합 모델

_9.2.4 이상치 탐지와 특이치 탐지를 위한 알고리즘

연습문제


[2부 신경망과 딥러닝]

10장 케라스를 사용한 인공 신경망 소개

10.1 생물학적 뉴런에서 인공 뉴런까지

_10.1.1 생물학적 뉴런

_10.1.2 뉴런을 사용한 논리 연산

_10.1.3 퍼셉트론

_10.1.4 다층 퍼셉트론과 역전파

_10.1.5 회귀를 위한 다층 퍼셉트론

_10.1.6 분류를 위한 다층 퍼셉트론

10.2 케라스로 다층 퍼셉트론 구현하기

_10.2.1 시퀀셜 API로 이미지 분류기 만들기

__케라스로 데이터셋 적재하기

__시퀀셜 API로 모델 만들기

__모델 컴파일

__모델 훈련과 평가

__모델로 예측 만들기

_10.2.2 시퀀셜 API로 회귀용 다층 퍼셉트론 만들기

_10.2.3 함수형 API로 복잡한 모델 만들기

_10.2.4 서브클래싱 API로 동적 모델 만들기

_10.2.5 모델 저장과 복원하기

_10.2.6 콜백 사용하기

_10.2.7 텐서보드로 시각화하기

10.3 신경망 하이퍼파라미터 튜닝하기

_10.3.1 은닉 층 개수

_10.3.2 은닉 층의 뉴런 개수

_10.3.3 학습률, 배치 크기 그리고 다른 하이퍼파라미터

연습문제

11장 심층 신경망 훈련

11.1 그레이디언트 소실과 폭주 문제

_11.1.1 글로럿과 He 초기화

_11.1.2 고급 활성화 함수

__LeakyReLU

__ELU와 SELU

__GELU, Swish, Mish

_11.1.3 배치 정규화

__케라스로 배치 정규화 구현하기

_11.1.4 그레이디언트 클리핑

11.2 사전 훈련된 층 재사용하기

_11.2.1 케라스를 사용한 전이 학습

_11.2.2 비지도 사전 훈련

_11.2.3 보조 작업에서 사전 훈련

11.3 고속 옵티마이저

_11.3.1 모멘텀 최적화

_11.3.2 네스테로프 가속 경사

_11.3.3 AdaGrad

_11.3.4 RMSProp

_11.3.5 Adam

_11.3.6 AdaMax

_11.3.7 Nadam

_11.3.8 AdamW

_11.3.9 학습률 스케줄링

11.4 규제를 사용해 과대적합 피하기

_11.4.1 l1과 l2 규제

_11.4.2 드롭아웃

_11.4.3 몬테 카를로 드롭아웃

_11.4.4 맥스-노름 규제

11.5 요약 및 실용적인 가이드라인

연습문제

12장 텐서플로를 사용한 사용자 정의 모델과 훈련

12.1 텐서플로 훑어보기

12.2 넘파이처럼 텐서플로 사용하기

_12.2.1 텐서와 연산

_12.2.2 텐서와 넘파이

_12.2.3 타입 변환

_12.2.4 변수

_12.2.5 다른 데이터 구조

12.3 사용자 정의 모델과 훈련 알고리즘

_12.3.1 사용자 정의 손실 함수

_12.3.2 사용자 정의 요소를 가진 모델을 저장하고 로드하기

_12.3.3 활성화 함수, 초기화, 규제, 제한을 커스터마이징하기

_12.3.4 사용자 정의 지표

_12.3.5 사용자 정의 층

_12.3.6 사용자 정의 모델

_12.3.7 모델 구성 요소에 기반한 손실과 지표

_12.3.8 자동 미분으로 그레이디언트 계산하기

_12.3.9 사용자 정의 훈련 반복

12.4 텐서플로 함수와 그래프

_12.4.1 오토그래프와 트레이싱

_12.4.2 텐서플로 함수 사용법

연습문제

13장 텐서플로를 사용한 데이터 적재와 전처리

13.1 데이터 API

_13.1.1 연쇄 변환

_13.1.2 데이터 셔플링

_13.1.3 여러 파일에서 한 줄씩 번갈아 읽기

_13.1.4 데이터 전처리

_13.1.5 데이터 적재와 전처리 합치기

_13.1.6 프리페치

_13.1.7 케라스와 데이터셋 사용하기

13.2 TFRecord 포맷

_13.2.1 압축된 TFRecord 파일

_13.2.2 프로토콜 버퍼 개요

_13.2.3 텐서플로 프로토콜 버퍼

_13.2.4 Example 프로토콜 버퍼 읽고 파싱하기

_13.2.5 SequenceExample 프로토콜 버퍼로 리스트의 리스트 다루기

13.3 케라스의 전처리 층

_13.3.1 Normalization 층

_13.3.2 Discretization 층

_13.3.3 CategoryEncoding 층

_13.3.4 StringLookup 층

_13.3.5 Hashing 층

_13.3.6 임베딩을 사용해 범주형 특성 인코딩하기

_13.3.7 텍스트 전처리

_13.3.8 사전 훈련된 언어 모델 구성 요소 사용하기

_13.3.9 이미지 전처리 층

13.5 텐서플로 데이터셋 프로젝트

연습문제

14장 합성곱 신경망을 사용한 컴퓨터 비전

14.1 시각 피질 구조

14.2 합성곱 층

_14.2.1 필터

_14.2.2 여러 가지 특성 맵 쌓기

_14.2.3 케라스로 합성곱 층 구현하기

_14.2.4 메모리 요구 사항

14.3 풀링 층

14.4 케라스로 풀링 층 구현하기

14.5 CNN 구조

_14.5.1 LeNet-5

_14.5.2 AlexNet

_14.5.3 GoogLeNet

_14.5.4 VGGNet

_14.5.5 ResNet

_14.5.6 Xception

_14.5.7 SENet

_14.5.8 주목할 만한 다른 구조

_14.5.9 올바른 CNN 구조 선택

14.6 케라스로 ResNet-34 CNN 구현하기

14.7 케라스의 사전 훈련 모델 사용하기

14.8 사전 훈련된 모델을 사용한 전이 학습

14.9 분류와 위치 추정

14.10 객체 탐지

_14.10.1 완전 합성곱 신경망

_14.10.2 YOLO

14.11 객체 추적

14.12 시맨틱 분할

연습문제

15장 RNN과 CNN을 사용한 시퀀스 처리

15.1 순환 뉴런과 순환 층

_15.1.1 메모리 셀

_15.1.2 입력과 출력 시퀀스

15.2 RNN 훈련하기

15.3 시계열 예측하기

_15.3.1 ARMA 모델

_15.3.2 머신러닝 모델을 위한 데이터 준비하기

_15.3.3 선형 모델로 예측하기

_15.3.4 간단한 RNN으로 예측하기

_15.3.5 심층 RNN으로 예측하기

_15.3.6 다변량 시계열 예측하기

_15.3.7 여러 타임 스텝 앞 예측하기

_15.3.8 시퀀스-투-시퀀스 모델로 예측하기

15.4 긴 시퀀스 다루기

_15.4.1 불안정한 그레이디언트 문제와 싸우기

_15.4.2 단기 기억 문제 해결하기

__LSTM 셀

__GRU 셀

__1D 합성곱 층으로 시퀀스 처리하기

__WaveNet

연습문제

16장 RNN과 어텐션을 사용한 자연어 처리

16.1 Char-RNN으로 셰익스피어 문체 생성하기

_16.1.1 훈련 데이터셋 만들기

_16.1.2 Char-RNN 모델 만들고 훈련하기

_16.1.3 가짜 셰익스피어 텍스트 생성하기

_16.1.4 상태가 있는 RNN

16.2 감성 분석

_16.2.1 마스킹

_16.2.2 사전 훈련된 임베딩과 언어 모델 재사용하기

16.3 신경망 기계 번역을 위한 인코더-디코더 네트워크

_16.3.1 양방향 RNN

_16.3.2 빔 서치

16.4 어텐션 메커니즘

_16.4.1 트랜스포머 구조: 어텐션만 있으면 된다

__위치 인코딩

__멀티 헤드 어텐션

16.5 언어 모델 분야의 최근 혁신

16.6 비전 트랜스포머

16.7 허깅 페이스의 트랜스포머스 라이브러리

연습문제

17장 오토인코더, GAN 그리고 확산 모델

17.1 효율적인 데이터 표현

17.2 과소완전 선형 오토인코더로 PCA 수행하기

17.3 적층 오토인코더

_17.3.1 케라스로 적층 오토인코더 구현하기

_17.3.2 재구성 시각화

_17.3.3 패션 MNIST 데이터셋 시각화

_17.3.4 적층 오토인코더를 사용한 비지도 사전 훈련

_17.3.5 가중치 묶기

_17.3.6 오토인코더 한 개씩 훈련하기

17.4 합성곱 오토인코더

17.5 잡음 제거 오토인코더

17.6 희소 오토인코더

17.7 변이형 오토인코더

_17.7.1 패션 MNIST 이미지 생성하기

17.8 생성적 적대 신경망

_17.8.1 GAN 훈련의 어려움

_17.8.2 심층 합성곱 GAN

_17.8.3 ProGAN

__미니배치 표준 편차 층

__동일한 학습 속도

__픽셀별 정규화 층

_17.8.4 StyleGAN

__매핑 네트워크

__합성 네트워크

17.9 확산 모델

연습문제

18장 강화 학습

18.1 보상을 최적화하기 위한 학습

18.2 정책 탐색

18.3 OpenAI Gym

18.4 신경망 정책

18.5 행동 평가: 신용 할당 문제

18.6 정책 그레이디언트

18.7 마르코프 결정 과정

18.8 시간차 학습

18.9 Q-러닝

_18.9.1 탐험 정책

_18.9.2 근사 Q-러닝과 심층 Q-러닝

18.10 심층 Q-러닝 구현

18.11 심층 Q-러닝의 변형

_18.11.1 고정 Q-가치 타깃

_18.11.2 더블 DQN

_18.11.3 우선 순위 기반 경험 재생

_18.11.4 듀얼링 DQN

18.12 다른 강화 학습 알고리즘

연습문제

19장 대규모 텐서플로 모델 훈련과 배포

19.1 텐서플로 모델 서빙

_19.1.1 텐서플로 서빙 사용하기

__SavedModel로 내보내기

__텐서플로 서빙 설치하고 시작하기

__REST API로 TF 서빙에 쿼리하기

__gRPC API로 TF 서빙에 쿼리하기

__새로운 버전의 모델 배포하기

_19.1.2 버텍스 AI에서 예측 서비스 만들기

_19.1.3 버텍스 AI에서 배치 예측 작업 실행하기

19.2 모바일 또는 임베디드 디바이스에 모델 배포하기

19.3 웹 페이지에서 모델 실행하기

19.4 계산 속도를 높이기 위해 GPU 사용하기

_19.4.1 GPU 구매하기

_19.4.2 GPU RAM 관리하기

_19.4.3 디바이스에 연산과 변수 할당하기

_19.4.4 다중 장치에서 병렬 실행하기

19.5 다중 장치에서 모델 훈련하기

_19.5.1 모델 병렬화

_19.5.2 데이터 병렬화

__미러드 전략을 사용한 데이터 병렬화

__중앙 집중적인 파라미터를 사용한 데이터 병렬화

__대역폭 포화

_19.5.3 분산 전략 API를 사용한 대규모 훈련

_19.5.4 텐서플로 클러스터에서 모델 훈련하기

_19.5.5 버텍스 AI에서 대규모 훈련 작업 실행하기

_19.5.6 버텍스 AI의 하이퍼파라미터 튜닝

연습문제

마치며


[3부 부록]

부록 A 연습문제 정답

부록 B 머신러닝 프로젝트 체크리스트

B.1 문제를 정의하고 큰 그림을 그립니다

B.2 데이터를 수집합니다

B.3 데이터를 탐색합니다

B.4 데이터를 준비합니다

B.5 가능성 있는 몇 개의 모델을 고릅니다

B.6 모델을 미세 튜닝합니다

B.7 솔루션을 출시합니다

B.8 시스템을 론칭합니다!

부록 C 자동 미분

C.1 수동 미분

C.2 유한 차분 근사

C.3 전진 모드 자동 미분

C.4 후진 모드 자동 미분

부록 D 특수한 데이터 구조

D.1 문자열

D.2 래그드 텐서

D.3 희소 텐서

D.4 텐서 배열

D.5 집합

D.6 큐

부록 E 텐서플로 그래프

E.1 TF 함수와 콘크리트 함수

E.2 함수 정의와 함수 그래프 탐험하기

E.3 트레이싱 자세히 보기

E.4 오토그래프로 제어 흐름 표현하기

E.5 TF 함수에서 변수와 다른 리소스 다루기

E.6 케라스로 TF 함수 사용하기(또는 사용하기 않기)

역자 소개


01. 반품기한
  • 단순 변심인 경우 : 상품 수령 후 7일 이내 신청
  • 상품 불량/오배송인 경우 : 상품 수령 후 3개월 이내, 혹은 그 사실을 알게 된 이후 30일 이내 반품 신청 가능
02. 반품 배송비
반품 배송비
반품사유 반품 배송비 부담자
단순변심 고객 부담이며, 최초 배송비를 포함해 왕복 배송비가 발생합니다. 또한, 도서/산간지역이거나 설치 상품을 반품하는 경우에는 배송비가 추가될 수 있습니다.
상품의 불량 또는 오배송 고객 부담이 아닙니다.
03. 배송상태에 따른 환불안내
환불안내
진행 상태 결제완료 상품준비중 배송지시/배송중/배송완료
어떤 상태 주문 내역 확인 전 상품 발송 준비 중 상품이 택배사로 이미 발송 됨
환불 즉시환불 구매취소 의사전달 → 발송중지 → 환불 반품회수 → 반품상품 확인 → 환불
04. 취소방법
  • 결제완료 또는 배송상품은 1:1 문의에 취소신청해 주셔야 합니다.
  • 특정 상품의 경우 취소 수수료가 부과될 수 있습니다.
05. 환불시점
환불시점
결제수단 환불시점 환불방법
신용카드 취소완료 후, 3~5일 내 카드사 승인취소(영업일 기준) 신용카드 승인취소
계좌이체 실시간 계좌이체 또는 무통장입금
취소완료 후, 입력하신 환불계좌로 1~2일 내 환불금액 입금(영업일 기준)
계좌입금
휴대폰 결제 당일 구매내역 취소시 취소 완료 후, 6시간 이내 승인취소
전월 구매내역 취소시 취소 완료 후, 1~2일 내 환불계좌로 입금(영업일 기준)
당일취소 : 휴대폰 결제 승인취소
익월취소 : 계좌입금
포인트 취소 완료 후, 당일 포인트 적립 환불 포인트 적립
06. 취소반품 불가 사유
  • 단순변심으로 인한 반품 시, 배송 완료 후 7일이 지나면 취소/반품 신청이 접수되지 않습니다.
  • 주문/제작 상품의 경우, 상품의 제작이 이미 진행된 경우에는 취소가 불가합니다.
  • 구성품을 분실하였거나 취급 부주의로 인한 파손/고장/오염된 경우에는 취소/반품이 제한됩니다.
  • 제조사의 사정 (신모델 출시 등) 및 부품 가격변동 등에 의해 가격이 변동될 수 있으며, 이로 인한 반품 및 가격보상은 불가합니다.
  • 뷰티 상품 이용 시 트러블(알러지, 붉은 반점, 가려움, 따가움)이 발생하는 경우 진료 확인서 및 소견서 등을 증빙하면 환불이 가능하지만 이 경우, 제반 비용은 고객님께서 부담하셔야 합니다.
  • 각 상품별로 아래와 같은 사유로 취소/반품이 제한 될 수 있습니다.

환불불가
상품군 취소/반품 불가사유
의류/잡화/수입명품 상품의 택(TAG) 제거/라벨 및 상품 훼손으로 상품의 가치가 현저히 감소된 경우
계절상품/식품/화장품 고객님의 사용, 시간경과, 일부 소비에 의하여 상품의 가치가 현저히 감소한 경우
가전/설치상품 전자제품 특성 상, 정품 스티커가 제거되었거나 설치 또는 사용 이후에 단순변심인 경우, 액정화면이 부착된 상품의 전원을 켠 경우 (상품불량으로 인한 교환/반품은 AS센터의 불량 판정을 받아야 합니다.)
자동차용품 상품을 개봉하여 장착한 이후 단순변심의 경우
CD/DVD/GAME/BOOK등 복제가 가능한 상품의 포장 등을 훼손한 경우
내비게이션, OS시리얼이 적힌 PMP 상품의 시리얼 넘버 유출로 내장된 소프트웨어의 가치가 감소한 경우
노트북, 테스크탑 PC 등 홀로그램 등을 분리, 분실, 훼손하여 상품의 가치가 현저히 감소하여 재판매가 불가할 경우